{-# LINE 1 "src/OpenCV/ImgProc/GeometricImgTransform.hsc" #-} {-# language QuasiQuotes #-} {-# language TemplateHaskell #-} {- | The functions in this section perform various geometrical transformations of 2D images. They do not change the image content but deform the pixel grid and map this deformed grid to the destination image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from destination to the source. That is, for each pixel @(x,y)@ of the destination image, the functions compute coordinates of the corresponding "donor" pixel in the source image and copy the pixel value: @dst(x,y) = src(fx(x,y), fy(x,y))@ In case when you specify the forward mapping @\<gx,gy> : src -> dst@, the OpenCV functions first compute the corresponding inverse mapping @\<fx,fy>:dst->src@ and then use the above formula. The actual implementations of the geometrical transformations, from the most generic remap and to the simplest and the fastest resize, need to solve two main problems with the above formula: * Extrapolation of non-existing pixels. Similarly to the filtering functions described in the previous section, for some @(x,y)@, either one of @fx(x,y)@, or @fy(x,y)@, or both of them may fall outside of the image. In this case, an extrapolation method needs to be used. OpenCV provides the same selection of extrapolation methods as in the filtering functions. In addition, it provides the method 'BorderTransparent'. This means that the corresponding pixels in the destination image will not be modified at all. * Interpolation of pixel values. Usually @fx(x,y)@ and @fy(x,y)@ are floating-point numbers. This means that @\<fx,fy>@ can be either an affine or perspective transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the nearest integer coordinates and the corresponding pixel can be used. This is called a nearest-neighbor interpolation. However, a better result can be achieved by using more sophisticated interpolation methods , where a polynomial function is fit into some neighborhood of the computed pixel @(fx(x,y),fy(x,y))@, and then the value of the polynomial at @(fx(x,y),fy(x,y))@ is taken as the interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See resize for details. -} module OpenCV.ImgProc.GeometricImgTransform ( ResizeAbsRel(..) , resize , warpAffine , warpPerspective , invertAffineTransform , getPerspectiveTransform , getRotationMatrix2D , remap , undistort ) where import "base" Data.Int ( Int32 ) import "base" Foreign.C.Types ( CFloat, CDouble ) import "base" System.IO.Unsafe ( unsafePerformIO ) import qualified Data.Vector as V import qualified "inline-c" Language.C.Inline as C import qualified "inline-c" Language.C.Inline.Unsafe as CU import qualified "inline-c-cpp" Language.C.Inline.Cpp as C import "linear" Linear.V2 ( V2(..) ) import "linear" Linear.Vector ( zero ) import "this" OpenCV.Core.Types import "this" OpenCV.ImgProc.Types import "this" OpenCV.Internal.C.Inline ( openCvCtx ) import "this" OpenCV.Internal.C.Types import "this" OpenCV.Internal.Core.Types import "this" OpenCV.Internal.Core.Types.Mat import "this" OpenCV.Internal.Exception import "this" OpenCV.Internal.ImgProc.Types import "this" OpenCV.TypeLevel -------------------------------------------------------------------------------- C.context openCvCtx C.include "opencv2/core.hpp" C.include "opencv2/imgproc.hpp" C.using "namespace cv" -------------------------------------------------------------------------------- data ResizeAbsRel = ResizeAbs Size2i -- ^ Resize to an absolute size. | ResizeRel (V2 Double) -- ^ Resize with relative factors for both the width and the height. deriving Show marshalResizeAbsRel :: ResizeAbsRel -> (Size2i, CDouble, CDouble) marshalResizeAbsRel (ResizeAbs s) = (s, 0 , 0 ) marshalResizeAbsRel (ResizeRel f) = (s, c'fx, c'fy) where s :: Size2i s = toSize (zero :: V2 Int32) (V2 c'fx c'fy) = realToFrac <$> f {- | Resizes an image To shrink an image, it will generally look best with 'InterArea' interpolation, whereas to enlarge an image, it will generally look best with 'InterCubic' (slow) or 'InterLinear' (faster but still looks OK). Example: @ resizeInterAreaImg :: Mat ('S ['D, 'D]) ('S 3) ('S Word8) resizeInterAreaImg = exceptError $ withMatM (h ::: w + (w \`div` 2) ::: Z) (Proxy :: Proxy 3) (Proxy :: Proxy Word8) transparent $ \\imgM -> do birds_resized <- pureExcept $ resize (ResizeRel $ pure 0.5) InterArea birds_768x512 matCopyToM imgM (V2 0 0) birds_768x512 Nothing matCopyToM imgM (V2 w 0) birds_resized Nothing lift $ arrowedLine imgM (V2 startX y) (V2 pointX y) red 4 LineType_8 0 0.15 where [h, w] = miShape $ matInfo birds_768x512 startX = round $ fromIntegral w * (0.95 :: Double) pointX = round $ fromIntegral w * (1.05 :: Double) y = h \`div` 4 @ <<doc/generated/examples/resizeInterAreaImg.png resizeInterAreaImg>> <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#resize OpenCV Sphinx doc> -} resize :: ResizeAbsRel -> InterpolationMethod -> Mat ('S [height, width]) channels depth -> CvExcept (Mat ('S ['D, 'D]) channels depth) resize factor interpolationMethod src = unsafeWrapException $ do dst <- newEmptyMat handleCvException (pure $ unsafeCoerceMat dst) $ withPtr src $ \srcPtr -> withPtr dst $ \dstPtr -> withPtr dsize $ \dsizePtr -> [cvExcept| cv::resize ( *$(Mat * srcPtr) , *$(Mat * dstPtr) , *$(Size2i * dsizePtr) , $(double fx) , $(double fy) , $(int32_t c'interpolation) ); |] where (dsize, fx, fy) = marshalResizeAbsRel factor c'interpolation = marshalInterpolationMethod interpolationMethod c'WARP_FILL_OUTLIERS = 8 c'WARP_FILL_OUTLIERS :: (Num a) => a {-# LINE 167 "src/OpenCV/ImgProc/GeometricImgTransform.hsc" #-} c'WARP_INVERSE_MAP = 16 c'WARP_INVERSE_MAP :: (Num a) => a {-# LINE 168 "src/OpenCV/ImgProc/GeometricImgTransform.hsc" #-} {- | Applies an affine transformation to an image Example: @ rotateBirds :: Mat (ShapeT [2, 3]) ('S 1) ('S Double) rotateBirds = getRotationMatrix2D (V2 256 170 :: V2 CFloat) 45 0.75 warpAffineImg :: Kodak_512x341 warpAffineImg = exceptError $ warpAffine birds_512x341 rotateBirds InterArea False False (BorderConstant black) warpAffineInvImg :: Kodak_512x341 warpAffineInvImg = exceptError $ warpAffine warpAffineImg rotateBirds InterCubic True False (BorderConstant black) @ <<doc/generated/birds_512x341.png original >> <<doc/generated/examples/warpAffineImg.png warpAffineImg >> <<doc/generated/examples/warpAffineInvImg.png warpAffineInvImg>> <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#warpaffine OpenCV Sphinx doc> -} warpAffine :: Mat ('S [height, width]) channels depth -- ^ Source image. -> Mat (ShapeT [2, 3]) ('S 1) ('S Double) -- ^ Affine transformation matrix. -> InterpolationMethod -> Bool -- ^ Perform the inverse transformation. -> Bool -- ^ Fill outliers. -> BorderMode -- ^ Pixel extrapolation method. -> CvExcept (Mat ('S [height, width]) channels depth) -- ^ Transformed source image. warpAffine src transform interpolationMethod inverse fillOutliers borderMode = unsafeWrapException $ do dst <- newEmptyMat handleCvException (pure $ unsafeCoerceMat dst) $ withPtr src $ \srcPtr -> withPtr dst $ \dstPtr -> withPtr transform $ \transformPtr -> withPtr borderValue $ \borderValuePtr -> [cvExcept| Mat * src = $(Mat * srcPtr); cv::warpAffine ( *src , *$(Mat * dstPtr) , *$(Mat * transformPtr) , src->size() , $(int32_t c'interpolationMethod) | $(int32_t c'inverse) | $(int32_t c'fillOutliers) , $(int32_t c'borderMode) , *$(Scalar * borderValuePtr) ); |] where c'interpolationMethod = marshalInterpolationMethod interpolationMethod c'inverse = if inverse then c'WARP_INVERSE_MAP else 0 c'fillOutliers = if fillOutliers then c'WARP_FILL_OUTLIERS else 0 (c'borderMode, borderValue) = marshalBorderMode borderMode -- | Applies a perspective transformation to an image -- -- <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#warpperspective OpenCV Sphinx doc> warpPerspective :: Mat ('S [height, width]) channels depth -- ^ Source image. -> Mat (ShapeT [3, 3]) ('S 1) ('S Double) -- ^ Perspective transformation matrix. -> InterpolationMethod -> Bool -- ^ Perform the inverse transformation. -> Bool -- ^ Fill outliers. -> BorderMode -- ^ Pixel extrapolation method. -> CvExcept (Mat ('S [height, width]) channels depth) -- ^ Transformed source image. warpPerspective src transform interpolationMethod inverse fillOutliers borderMode = unsafeWrapException $ do dst <- newEmptyMat handleCvException (pure $ unsafeCoerceMat dst) $ withPtr src $ \srcPtr -> withPtr dst $ \dstPtr -> withPtr transform $ \transformPtr -> withPtr borderValue $ \borderValuePtr -> [cvExcept| Mat * src = $(Mat * srcPtr); cv::warpPerspective ( *src , *$(Mat * dstPtr) , *$(Mat * transformPtr) , src->size() , $(int32_t c'interpolationMethod) | $(int32_t c'inverse) | $(int32_t c'fillOutliers) , $(int32_t c'borderMode) , *$(Scalar * borderValuePtr) ); |] where c'interpolationMethod = marshalInterpolationMethod interpolationMethod c'inverse = if inverse then c'WARP_INVERSE_MAP else 0 c'fillOutliers = if fillOutliers then c'WARP_FILL_OUTLIERS else 0 (c'borderMode, borderValue) = marshalBorderMode borderMode -- | Inverts an affine transformation -- -- <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#invertaffinetransform OpenCV Sphinx doc> invertAffineTransform :: Mat (ShapeT [2, 3]) ('S 1) depth -- ^ -> CvExcept (Mat (ShapeT [2, 3]) ('S 1) depth) invertAffineTransform matIn = unsafeWrapException $ do matOut <- newEmptyMat handleCvException (pure $ unsafeCoerceMat matOut) $ withPtr matIn $ \matInPtr -> withPtr matOut $ \matOutPtr -> [cvExcept| cv::invertAffineTransform(*$(Mat * matInPtr), *$(Mat * matOutPtr)); |] {- | Calculates a perspective transformation matrix for 2D perspective transform <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#getperspectivetransform OpenCV Sphinx doc> -} getPerspectiveTransform :: (IsPoint2 point2 CFloat) => V.Vector (point2 CFloat) -- ^ Array of 4 floating-point Points representing 4 vertices in source image -> V.Vector (point2 CFloat) -- ^ Array of 4 floating-point Points representing 4 vertices in destination image -> Mat (ShapeT [3,3]) ('S 1) ('S Double) -- ^ The output perspective transformation, 3x3 floating-point-matrix. getPerspectiveTransform srcPts dstPts = unsafeCoerceMat $ unsafePerformIO $ withArrayPtr (V.map toPoint srcPts) $ \srcPtsPtr -> withArrayPtr (V.map toPoint dstPts) $ \dstPtsPtr -> fromPtr [CU.block| Mat * { return new cv::Mat ( cv::getPerspectiveTransform($(Point2f * srcPtsPtr), $(Point2f * dstPtsPtr)) ); }|] {- | Calculates an affine matrix of 2D rotation <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#getrotationmatrix2d OpenCV Sphinx doc> -} getRotationMatrix2D :: (IsPoint2 point2 CFloat) => point2 CFloat -- ^ Center of the rotation in the source image. -> Double -- ^ Rotation angle in degrees. Positive values mean counter-clockwise -- rotation (the coordinate origin is assumed to be the top-left corner). -> Double -- ^ Isotropic scale factor. -> Mat (ShapeT [2, 3]) ('S 1) ('S Double) -- ^ The output affine transformation, 2x3 floating-point matrix. getRotationMatrix2D center angle scale = unsafeCoerceMat $ unsafePerformIO $ withPtr (toPoint center) $ \centerPtr -> fromPtr [CU.block| Mat * { return new cv::Mat ( cv::getRotationMatrix2D ( *$(Point2f * centerPtr) , $(double c'angle) , $(double c'scale) ) ); }|] where c'angle = realToFrac angle c'scale = realToFrac scale {- | Applies a generic geometrical transformation to an image. The function remap transforms the source image using the specified map: @dst(x,y) = src(map(x,y))@ Example: @ remapImg :: forall (width :: Nat) (height :: Nat) (channels :: Nat) (depth :: * ) . (Mat ('S ['S height, 'S width]) ('S channels) ('S depth) ~ Kodak_512x341) => Mat ('S ['S height, 'S width]) ('S channels) ('S depth) remapImg = exceptError $ remap birds_512x341 transform InterLinear (BorderConstant black) where transform = exceptError $ matFromFunc (Proxy :: Proxy [height, width]) (Proxy :: Proxy 2) (Proxy :: Proxy Float) exampleFunc exampleFunc [_y, x] 0 = wobble x w exampleFunc [ y, _x] 1 = wobble y h exampleFunc _pos _channel = error "impossible" wobble :: Int -> Float -> Float wobble v s = let v' = fromIntegral v n = v' / s in v' + (s * 0.05 * sin (n * 2 * pi * 5)) w = fromInteger $ natVal (Proxy :: Proxy width) h = fromInteger $ natVal (Proxy :: Proxy height) @ <<doc/generated/birds_512x341.png original>> <<doc/generated/examples/remapImg.png remapImg>> <http://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/geometric_transformations.html#remap OpenCV documentation> -} remap :: Mat ('S [inputHeight, inputWidth]) inputChannels inputDepth -- ^ Source image. -> Mat ('S [outputHeight, outputWidth]) ('S 2) ('S Float) -- ^ A map of @(x, y)@ points. -> InterpolationMethod -- ^ Interpolation method to use. Note that 'InterArea' is not -- supported by this function. -> BorderMode -> CvExcept (Mat ('S [outputHeight, outputWidth]) inputChannels inputDepth) remap src mapping interpolationMethod borderMode = unsafeWrapException $ do dst <- newEmptyMat handleCvException (pure $ unsafeCoerceMat dst) $ withPtr src $ \srcPtr -> withPtr dst $ \dstPtr -> withPtr mapping $ \mappingPtr -> withPtr borderValue $ \borderValuePtr -> [cvExcept| cv::remap ( *$(Mat * srcPtr) , *$(Mat * dstPtr) , *$(Mat * mappingPtr) , {} , $(int32_t c'interpolation) , $(int32_t c'borderMode) , *$(Scalar * borderValuePtr) ); |] where c'interpolation = marshalInterpolationMethod interpolationMethod (c'borderMode, borderValue) = marshalBorderMode borderMode {-| The function transforms an image to compensate radial and tangential lens distortion. Those pixels in the destination image, for which there is no correspondent pixels in the source image, are filled with zeros (black color). The camera matrix and the distortion parameters can be determined using @calibrateCamera@ . If the resolution of images is different from the resolution used at the calibration stage, f_x, f_y, c_x and c_y need to be scaled accordingly, while the distortion coefficients remain the same. Example: @ undistortImg :: forall (width :: Nat) (height :: Nat) (channels :: Nat) (depth :: * ) . (Mat ('S ['S height, 'S width]) ('S channels) ('S depth) ~ Kodak_512x341) => Mat ('S ['S height, 'S width]) ('S channels) ('S depth) undistortImg = undistort birds_512x341 intrinsics coefficients where intrinsics :: M33 Float intrinsics = V3 (V3 15840.8 0 2049) (V3 0 15830.3 1097) (V3 0 0 1) coefficients :: Matx51d coefficients = unsafePerformIO $ newMatx51d (-2.239145913492247) 13.674526561736648 3.650187848850095e-2 (-2.0042015752853796e-2) (-0.44790921357620456) @ <<doc/generated/birds_512x341.png original>> <<doc/generated/examples/undistortImg.png undistortImg>> -} undistort :: ( ToMat m33d, MatShape m33d ~ 'S '[ 'S 3, 'S 3 ] , ToMat distCoeffs, MatShape distCoeffs `In` '[ 'S '[ 'S 4, 'S 1 ] , 'S '[ 'S 5, 'S 1 ] , 'S '[ 'S 8, 'S 1 ] , 'S '[ 'S 12, 'S 1 ] , 'S '[ 'S 14, 'S 1 ] ] ) => Mat ('S '[ h, w]) c d -- ^ The source image to undistort. -> m33d -- ^ The 3x3 matrix of intrinsic parameters. -> distCoeffs -- ^ The distortion coefficients -- (k1,k2,p1,p2[,k3[,k4,k5,k6[,s1,s2,s3,s4[,τx,τy]]]]) of 4, 5, 8, 12 or 14 elements. -> Mat ('S '[ h, w]) c d undistort img camera distCoeffs = unsafePerformIO $ do dst <- newEmptyMat withPtr img $ \imgPtr -> withPtr dst $ \dstPtr -> withPtr (toMat camera) $ \cameraPtr -> withPtr (toMat distCoeffs) $ \distCoeffsPtr -> [C.block| void { undistort(*$(Mat * imgPtr), *$(Mat * dstPtr), *$(Mat * cameraPtr), *$(Mat * distCoeffsPtr)); }|] return (unsafeCoerceMat dst)